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The Kolbe—Schmitt reaction has been a standard procedure for the preparation
of aromatic hydroxy acids for over ninety vears. In general, substitution occurs
ortho to the phenolic hydroxyl group, but cases of para substitution are also
known. Although numerous scattered references appear in the journals, no
comprehensive review has hitherto been available. Henecka gives some account
of the experimental aspects (98) and Davies briefly mentions the reaction mech-
anisms proposed prior to 1928 (52).
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The purpose of this review is to bring together the many isolated applications
of the Kolbe-Schmitt reaction in the form of a general survey. Special emphasis
is placed on reaction mechanisms and the various factors which influence the
course of the reaction. A tabular summary of the phenols carbonated, together
with experimental conditions and yields of hydroxy acids, is presented. An effort
has been made to review the literature through January 1956.

II. HistoricaL
A. KOLBE METHOD

In 1860 Kolbe succeeded in preparing salicylic acid by heating a mixture of
phenol and sodium in the presence of carbon dioxide at atmospheric pressure
(139, 140, 141). The sodium salicylate formed in this reaction was dissolved in
water and the salicylic acid precipitated on acidification. Kolbe wished to show
that salicylic acid was monobasic by preparing it from its decomposition prod-
ucts, phenol and carbon dioxide. The successful synthesis in 1860 was a climax
to many futile attempts to prepare salicylic acid in this way. Using this same
procedure Kolbe also produced p-cresotinic acid and o¢-thymotinic acids from
p-cresol and thymol, respectively (142).

Some years later Kolbe found it necessary to prepare a large amount of sal-
ieylic acid. However, on attempting to reproduce the original synthesis, it was
found that the yield of salieylic acid varied greatly under seemingly similar
reaction conditions. During studies designed to correct this variation in yield,
Kolbe found that not only were sodium salicylate and phenol produced in the
reaction, but also sodium phenoxide and sodium carbonate. A puzzling feature
was that one-half of the initial amount of the phenol was volatilized from the
reaction mixture, despite absolutely dry conditions. Kolbe then found that by
starting with previously prepared sodium phenoxide a very good yield of sal-
icylic acid was obtained.

With these observations in mind Kolbe recommended a new procedure for the
preparation of salicylic acid (137). Sodium phenoxide was prepared by evaporat-
ing to dryness an aqueous solution containing equivalent amounts of phenol and
sodium hydroxide. The solid phenoxide, which is extremely hygroscopic, was
powdered and protected from air until ready for use. The dried sodium phenoxide
was heated in an iron retort to 180°C., and carbon dioxide was allowed to pass
slowly over the hot salt. The introduction of carbon dioxide caused a large
amount of phenol to distil. The temperature was finally raised to 220-250°C.,
and the reaction was considered complete when no more phenol distilled. In
this procedure the yield of salicylic acid never exceeded 50 per cent, since one-
half of the starting phenol was lost by volatilization.

B. SCHMITT METHOD

A modification of the Kolbe reaction, in which the carbonation was carried
out under pressure and which resulted in greatly improved yields, was described
in 1884 by Schmitt, who took out patents covering the preparation of salicylic
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and homologous acids (202, 203) and hydroxynaphthoic acids (106, 203). These
procedures were subsequently elaborated (204, 207). Thus, for example, dry
sodium phenoxide is placed in a closed vessel and heated with carbon dioxide
at 120~130° C. for several hours under a pressure of 80 to 94 atm. Under thesc
conditions no phenol is lost and an almost quantitative yield of salicylic acid is
obtained. This modified procedure, known as the Kolbe—Schmitt reaction,
remains the standard method for the preparation of a wide variety of aromatic
hydroxy acids.

C. MARASSE METHOD

A further and by far the most simple modification of the Kolbe-Schmitt
reaction was introduced in 1893 by Marasse (159, 160). In this procedure a
mixture of the free phenol and excess anhydrous potassium carbonate is car-
bonated under pressure and at elevated temperature to give the potassium salt
of the aromatic hydroxy acid. Acidification gives the free acid in good yield.
Recent work indicates that the Marasse modification is fully as general as the
Kolbe—Schmitt method and in many cases gives better yields (6, 36, 254). In
addition it avoids the time-consuming preparation of the hygroscopic phenoxides.

The excess potassium carbonate acts as an extender and prevents fusion of the
mixture with consequent lower yield. Industrially the process would be expensive,
since only potassium, rubidium, or cesium carbonates are known to be suitable,
the cheaper sodium, magnesium, and calcium carbonates being inert in the
reaction, To make the process economically cheaper Marasse later proposed that
only one part of potassium carbonate to two parts of phenol be used, with addi-
tion of kieselguhr as an extender (1).

D. METHODS INVOLVING THE USE OF SOLVENTS
1. Carbonation in agueous solutions

While water will inhibit the carbonation of monochydric phenols, the more
reactive di- and trihydric phenols—especially where the hydroxyl groups are
meta to one another—can be carbonated in alkaline solution. With phenols such
as resorcinol, pyrogallol, and phloroglucinol monocarbonation is achieved, in
good yield, by heating with fairly concentrated solutions of alkali bicarbonates
in an open vessel, usually with passage of carbon dioxide at atmospheric pressure
(19, 240, 259).

Thus B-resorcylic acid can be prepared in 60 per cent yield by the carbonation
of resorcinol in sodium bicarbonate solution (91, 172). Under similar conditions,
but using carbon dioxide under a pressure of 100 atm., m-aminophenol may be
converted to p-aminosalicylic acid in 45 per cent yield (6).

2. Carbonation in organic solvents

The use of toluene as a suspension medium in the carbonation of the metal
salts of phloroglucinol and the naphthols with successful results was reported
in 1901 (173, 174). Later Brunner employed glycerol as a solvent for carbonations
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at atmospheric pressure. The phenol in glycerol solution is heated with alkali
bicarbonate in a stream of carbon dioxide at 130-210°C. (32). In general this
method does not give as satisfactory results as the Kolhe~Schmitt or Marasse
procedures, but it can be used where pressure equipment is not available.

Carbonation of metal aryloxides in dioxane, pyridine, and dialkyl ketones in
good yields has been reported (33, 80, 152). The general method is to dissolve the
phenol in the solvent, add the calculated amount of solid sodium hydroxide,
and, after refluxing, azeotropically distil the water formed. Carbonation can
often be effected at atmospheric pressure. Owing to the high cost of organic
solvents this method has not been adopted by industry.

3. Carbonation in phenols (Wacker process)

Although it was shown in 1923 that sodium or potassium 2-naphthoxide could
be satisfactorily carbonated in an excess of 2-naphthol (11), the general appli-
cability of this method was only recognized later by Wacker (248). The procedure
is to dissolve one molecular proportion of caustic soda in six molecular propor-
tions of the phenol and distil the excess water at 140°C., adding some xylene if
necessary. Carbon dioxide is then passed into the solution at 1 atm. for several
hours, and the product is isolated in the usual way. Very pure ortho-carbonated
products can be obtained by this method.

E. PRESENT-DAY INDUSTRIAL PROCESSES

The general method of the manufacture of salicylic acid by the carbonation
of dry sodium phenoxide with carbon dioxide under pressure is essentially the
same in all the major manufacturing countries and has been adequately described
(Britain: 256) (Germany: 2, 16, 17, 18, 49, 97) (U. 8. A.: 88). The Wacker process
is reported to have been used in France (256). Briefly, the process consists in
dissolving the phenol in slightly more than one equivalent of hot 50 per cent
sodium hydroxide solution. The solution is transferred to a main reactor, con-
sisting of either a vertical closed autoclave equipped with stirrer and baffles
or a closed rotary ball mill (67, 68), and is evaporated to dryness by heating at
130°C. under gradual reduction of pressure. Heating is continued until the
sodium phenoxide is in a completely dry, powdery form. Carbon dioxide at
about 5 atm. pressure is then charged into the reactor, the temperature being
held around 100°C.; after absorption of approximately one mole of carbon dioxide,
the temperature is raised and held at 150-160°C. for several hours. The carbona-
tion product is cooled and dissolved in water; after treatment with activated
charcoal the solution is filtered off. The crude sodium salicylate can be purified
by crystallization as the hexahydrate at a temperature below 20°C. (89). Salieylic
acid is obtained by acidification of the liquors, and is further purified by sub-
limation. By-products of the reaction are 2- and 4-hydroxyisophthalic acids,
which are found in the “brown dust” residues from the sublimation chambers
(120, 124). p-Hydroxybenzoic acid is also a by-product of the reaction and is
probably lost in the acidification liquors (143).
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A similar process is utilized in the manufacture of the three isomeric creso-
tinic acids and 2-hydroxynaphthoic acid (17). In the case of p-hydroxybenzoic
acid, potassium hydroxide is substituted for sodium hydroxide, the carbonation
of the dry potassium phenoxide being carried out at around 190°C.

Because of the use of p-aminosalicylic acid (PAS) in the treatment of human
tuberculosis, substantial quantities are now produced by the carbonation of
m-aminophenol (88, 117; see also Section VI). The general method consists in
heating m-aminophenol with a solution of potassium bicarbonate under carbon
dioxide (30 atm.) at 85°C. in an autoclave for several hours (66, 226, 253).
After unchanged material is filtered from the cold solution, addition of hydro-
chloric acid until the solution is just acid to Congo red precipitates p-amino-
salicylic acid, which can be further purified by solution in sodium bicarbonate
and reprecipitation with acid. Treatment with aqueous sulfurous acid under
pressure has also been suggested as a method of separation from the diacid by-
product (90). Addition of boric acid to the carbonation mixture has been reported
to give increased yields of p-aminosalicylic acid (180).

I11. Facrors INFLUENCING THE KOLBE-SCHMITT REACTION
A. EFFECT OF WATER

The use of damp sodium phenoxide or moist carbon dioxide in the salicylic
acid synthesis leads to low yields of product; the same is true for the alkali metal
salts of other monohydric phenols (39, 137). These salts are hygroscopic and
before carbonation are normally dried by heating under reduced pressure. A
similar adverse effect of water on yield has been reported in the case of the
Marasse method (36, 60). The interesting observation has also been made that
carbonation of disodium catechoxide, containing one mole of water, at 134°C.
leads to the formation of 2,3-dihydroxybenzoic acid, while perfectly dry starting
material yields 2,3-dihydroxyterephthalic acid at 210°C. (39, 209).

Chelation of water molecules with alkali metal ions is of importance in a
number of organic reactions (23), and it may well be that in the case of the
Kolbe-Schmitt reaction the stronger chelating power of water with the alkali
metal aryloxides will prevent the initial addition of carbon dioxide (92, 204).
Hydrolysis of the metal salt to the phenol and sodium hydroxide may also oceur.
Introduction of the carbon dioxide under these conditions will lead only to the
formation of sodium bicarbonate, the phenol being unaffected.

As has already been mentioned in this review (Section I1I), di- and trihydrie
phenols can be carbonated in aqueous solution in the presence of an alkali metal
carbonate such as potassium carbonate, the ease of carbonation varying con-
siderably with the compound employed. Thus catechol, resorcinol, pyrogallol,
and phloroglucinol can be carbonated under a stream of carbon dioxide in an
open flask, whereas quinol, 2-methylquinol, and m-aminophenol must be heated
in alkaline solution with carbon dioxide under pressure (19, 144, 164, 240, 258,
259). The greater ease of carbonation of these compounds may arise from lower
energies of activation gnd tautomerization to highly reactive keto forms. Re-
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TABLE 1
Carbonation of phenol
{ Salicylic Acid p-Hydroxybenzoic Acid i 4-Hydroxyisophthalic Acid
Temperature {

Na* K ’ M Na | K | M | Na | K ' M

- ! [ . !

| i i

°C. per cent per cent per cent ! per cent | per cent ' per cent ‘ per cend ‘ per cent 1, per cent

100 9t | 46 49 4 54 51 2 1 0 | o
150 97 54 57 2 44 2 1! 2 | 1
200 96 79 76 2 18 20 ; 2 ' 3 ‘ 4
250 95 67 63 1 Lo [ 4 32 36

* The symbols Na and K refer to the carbonation of sodium and potassium phenoxides, and M refers to the
Marasse modification.

t These values refer to the per cent composition of the total mixed acids isolated. The total overall yields in
many of the carbonations amounted to as much as 80 per cent based on the quantity of mixed acids isolated.

sorcinol, for example, is carbonated in the presence of a zinc-copper-chromium
oxide catalyst, no alkali being present (135). However, insufficient work has
been carried out to justify definite conclusions.

B. EFFECT OF PRESSURE AND TEMPERATURE

At a given temperature, increase of the carbon dioxide pressure above a certain
minimum value does not greatly affect the course of the carbonation reaction.
However, in some cases an increase in the reaction rate may occur, with a conse-
quent improvement in yield of product for a given reaction time. It has been
found (6), for example, that carbonation of sodium or potassium phenoxide
under the conditions specified by Kolbe and Schmitt or Marasse is little affected
in total yield or relative amounts of the acids formed by variation of the pressure
between 80 atm. and 130 atm. or of the time of heating between 4 and 24 hr.
(table 1). The rearrangement of sodium 2-hydroxy-l-naphthoate to sodium 2-
hydroxy-3-naphthoate during the carbonation of sodium 2-naphthoxide at 145~
160°C. is likewise unaffected by increase of pressureup to 45 atm. (231). Increased
pressure at high temperatures has been found to lead to disubstitution in the
ortho and para positions (128).

The minimal pressure required for quantitative carbonation probably corre-
sponds to the dissociation pressure of the metal aryloxide~-carbon dioxide com-
plex at the temperature employed and possibly varies according to the aryloxide
used. Davies showed that for the sodium phenoxide-carbon dioxide complex
(prepared by heating sodium phenoxide at 105°C. with carbon dioxide under
pressure) the dissociation pressure at temperatures above 140°C. lay between
3 and 4 atm. (52), The thermal decomposition of monosodium salicylate in an
evacuated system was investigated by plotting the P, T curve. In this way the
equilibrium temperature and pressure for the irreversible reaction

HOCGH4COON& — CGH5ON3 + COg

was found to be approximately 150°C. and 74 mm. of mercury, while above
150°C. the reversible reaction

HOCH,COONa + CeH:ONa = NaOCH,COONa + CsH;OH
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TABLE 2
Carbonation of (A) potassium phenoxide and (B) cestum phenoridc
| ; i Yield
: Total Yield of
Temperature Pressure s N T Tt T
P : 1 Mixed Acids Salicylic 1 -Hydroxy -
' acid enzoic acid
‘ per cent : per ceni 1 per cent
‘(i 140°C. 5 atm. i 42 60 ‘ 40
R <‘ 210°C. ‘ 5atm ! 0 76 ; 24
1 240°C. i 5 atm. 29 X 93 | 5
t; 180°C. i 40 atm. 75 | 97 | 3
| i : ‘
B ! 140°C. ‘ 5 atm. ; 31 34 | 86
\ 210°C. 40 atm. i 63 88 2

| ! ; i

The reaction mixture was heated for 4 hr. at the stated temperature. the preheating period being about 15 hr.
(254).

TABLE 3
Carbonation of (A) potasstuin phenozxide and (B) cesium phenoride at I atm. (264)

| ; .
| Yield c oy
Tempersture N e A — Shenol Bistiing
Mixed Acids ¢ Salicylic | p-Hydroxy- of Theoretical
[ act enzoic acid
! per cent ‘ per cent per cent
1 i
f 140°C. 39 | 59 41 7
A ; 190°C. 43 | 20 ’ 70 —
U 210°C. ! 48 | f 94 46
!
B 140°C. 40 E 22 78 —
210 C. 46 ’ 7 —

was found to occur. At temperatures of 200°C. and above, it has been shown
(52) that decomposition of monosodium salicylate proceeds according to the
following equation:

2HOCH.COONa — NaOCsH,COONa + C:H;0H + CO,

The extent to which this occurs at lower temperatures is at present uncertain.

Temperature, in contrast to pressure, greatly influences the reactivity of the
aryloxide as well as the position of substitution. Results illustrating the effect
of variation in temperature and alkali metal used are shown in tables 1, 2, and 3.

Although it was early reported that p-hydroxybenzoic acid was exclusively
obtained by the carbonation of potassium phenoxide (107), recent results
(table 3) suggest that ortho substitution occurs initially, with subsequent re-
arrangement at higher temperatures (128, 254). The rearrangement of sodium
2-hydroxy-1-naphthoate appears to be analogous (231). Thus variation of the
products with increasing temperatures may arise either from direct carbonation
at different positions in the nucleus or by rearrangement.

C. EFFECT OF ALKALI METAL

The Kolbe-Schmitt reaction is the classical example of a reaction in which
the nature of the reaction product is greatly affected by the alkali metal used.
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TABLE 4
Effect of the alkali metal on the carbonation produci

Alkali’ Temp- | COs |Time of|

Compound Metal ' erature {Pressure Heating| Products Reference
—_ e R | ! [P — e - ——
‘ °C. 1 aim.  hours ‘
Phenol Li 200 } 8 1% Salicylic acid (8.79, (1284
" Nx 200 ¢ 08 | 18 Salicylic acid (30.5%)
K o200 0 % | 18 ! Salioylic acid (4.2%)
) i ; . p-Hydroxybenzoic acid (40.6%%)
wic-m- Xylenol I Li 170 7 18 | 18 | 3,5-Dimethyl-4-hydroxybenzoic acid (24.2%)) (128
“Ns 170 , 18 | 18 ' 3,5-Dimethyl-4-hydrosybenzoic acid (32%)
K 170 18 1 18 3,5-Dimethyl-4-hydroxybenzoic acid (4.8%)
sym-m-Xyleno! INa | 170 ‘ 1 | o1 2,4-Dimethyl-6-hydroxybenzoic acid (8.4%) ' (128)
K 170 | 10 1% 2, 4 Dimethyl-6-hydroxybenzaic acid (35%)
i i | 2,6-Dimethyi-4-hydroxybenzoic acid (1%) ;
o-Tluorophenol ©Li o1 [T T 6 3-Fluoro-2-hydroxybenzoic acid (70%,) F (75, 76)
SN o180 | 53 ! t | 3-Fluoro-2-hydroxybenzoic acid (719) '
| : I 3-Fluoro-4-hydroxybenzoic acid (26%)
K 160 ! 5 ! ¢ | 3-Fluoro-2-hydroxybenzoic acid (259)

i | . 3-Fluoro-4-hydroxybenzoic acid (75%)

Thus under comparable conditions carbonation of sodium phenoxide will give
salicylic acid, while potassium phenoxide yields a mixture of salicylic and p-hy-
droxybenzoic acids (6, 138, 176). Similarly, in the naphthol series sodium 2-naph-
thoxide yields 2-hydroxy-3-naphthoic acid (the 2-hydroxy-1l-naphthoic acid at
low temperatures), whereas potassium 2-naphthoxide yields a mixture of 2-hy-
droxy-3-naphthoic acid and 2-hydroxy-6-naphthoic acid (3, 70). It has been
shown that sodium 6-quinolyloxide is not carbonated by being heated for 8 hr.
at 175°C. with carbon dioxide under pressure; the potassium derivative gives an
almost quantitative yield of 6-hydroxyquinoline-5-carboxylic acid (206). Neither
the sodium nor the potassium derivative of carbostyril could be carbonated
under the normal Kolbe-Schmitt or Marasse conditions (86, 129, 244). Some
examples of these differences are given in table 4.

The course of a number of organic reactions is greatly altered by varying the
alkali metal used. It has been shown that the rate of hydrolysis of ethyl sulfate
in 90 per cent aqueous methanol increased through the series NaOH < KOH <
N(CH;)(C;H;);0OH depending on the hydroxide employed (23). Similarly, the
ratio of ortho to para products in the Reimer-Tiemann reaction, using 15 N
alkali solutions, fell through the series NaOH > KOH > CsOH >
N(CH3) (C:Hs)sOH. It was suggested that the differences observed were associ-
ated with differences in the chelating strengths of the metals used, and it is
known that, in the series of alkali and alkaline earth metals, the chelating
strengths or stabilizing constants can be correlated with the ¢*/r values of the
ions (see table 5) (162, 217). Studies of the rearrangement of mono- and dimet-
alated salicylates suggests that C=0—MO chelation has some influence on the
course of this reaction (121, 122, 237). Support for this has been adduced from
conductivity measurements of the metal salicylates in acetone, where it was
found that the ionization of potassium, rubidium, and cesium salicylates was
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TABLE 5
Chelating strengths of metal ions
e _— - : T e -
\ , Stabitity | ‘ | Stability
Ton i RI:Eillfs ! - Constant in I Ton 1523;3‘ | R | Constant in
| | r Case of EDTA® s 4 . Case of EDTA
e ‘}__.._.*‘ [ ,'v_, B S s T b -
Lit. : 0.60 | 1.7 ] 2.8 ¢ Cat 1.87 ' #.80 ¢ No complex
Nat. Lo Lo L7 i[ Cat 1.18 3.4 10.6
K+ i 133 | 075 | Nocomples I S+ 1.32 3.0 l S.¢
Rbt, . 1.47 l 0.68 1 No complex | Ba?t ’ 1.53 2.6
I .

H | 7.8

*EDTA = ecthylenediaminetetraacetic acid

very much greater than that of lithium and sodium salicylates. On the assump-
tion that a close connection exists hetween ionization and the chelation effect, it
follows that lithium and sodium salicylates, which cannot be rearranged to p-hy-
droxybenzoate, are more strongly chelated than potassium, rubidium, and
cesium salicylates, which are readily rearranged on heating.

Some experimental evidence suggests that the carbonation of potassium
phenoxide occurs initially at the ortho position, the p-hydroxybenzoate arising
by subsequent rearrangement (128). It is also known that the carbonation of
sodium 2-naphthoxide leads initially to 2-hydroxy-l-naphthoic acid, which
rearranges to 2-hydroxy-3-naphthoic acid (231). However, the possibility of
intra- or intermolecular carbonation by an activated metal aryloxide—carbon
dioxide complex cannot be disregarded (92). A weak chelation effect of
SN—MO has been suggested as a factor adversely affecting the carbonation of
carbostyril (86).

The failure of sodium, magnesium, and calcium carbonates and of sodium
bicarbonate in the Marasse carbonation may arise from their insolubility and
consequent unreactivity toward phenols, the formation of the metal aryloxide
being a necessary prelude to earbonation (36, 254). Potassium bicarbonate and
potassium, rubidium, and cesium carbonates, however, readily react with phenols
and carbonation then proceeds.

In addition to the differences in chelation strengths of the alkali metals,
another factor which possibly influences orientation in the Kolbe—-Schmitt
reaction is a variation of the electromeric effect with the metal. In dissociating
solvents the phenoxy anion is known to have powerful ortho-para-directing
properties (126, 127). However, in the solid state or in nondissociating media
the polarizability of the metal-oxygen bond will vary with the polarizability
of the cation, and this suggests that the electromeric effect will increase through
the series N(C;H;)s0 < Li0O < NaO < KO < Rb0O < (=0 (166). No detailed
study of this aspect has been made.

D. EFFECT OF SOLVENT

One of the practical difficulties associated with carbonating metal aryloxides
in the solid state lies in the necessity for attaining absolutely anhydrous condi-
tions. A second difficulty lies in the production and maintenance of the dry
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TABLE 6
Carbonation in various solvents
Dielec-
. Tem-
Compound Solvent Ct;lrf_ ;ze;a; };:\ise Acid Product Yield Reenfce;-
stant u
°C. asm. per ceni

Sodium phenoxide... .| Methanol 31.2 140 22 None — (128)

Ethanol 25.8 140 8 | None

1-Butanol 19.2 155 10 Salieylic acid 7.5

Glycol 41.2 140 6 None —

Glycerol 56.2 170 10 | None -

Xylene (suspen- 2.6 138 1 Salieylic acid 33.5

sion)
Sodium 2-naphthoxide | Dioxane 2.2 260 & | 2-Hydroxy-3- — (152)
naphthoic acid
Sodium 1-naphthoxide.| Pyridine 12.5 115 1 | 1-Hydroxy-2- Almost quan- | (33)
naphthoic acid titative

Sodium phenoxide. .. Diisobutyl ketone — 150 1 | Salicylic acid 18.9 (80)

aryloxide in a finely divided state. Caking during carbonation or ineflicient
mixing results in low yields and may also lead to superheating, with formation
of undesirable by-products.

Use of an inert solvent or suspension medium obviates these difficulties, since
azeotropic distillation of part of the solvent will remove water and stirring can
be efficiently conducted. Hydrocarbons, for example, can act as solvents for
metal phenoxides with long-chain alkyl substituents, but generally the phen-
oxides are insoluble in this type of solvent and the compound must be carbonated
as a finely divided suspension (50, 173, 174, 184, 228).

In addition to the Wacker process, where excess phenol is utilized as solvent,
glycerol (32), 1,4-dioxane and 1,3-dioxane (152), pyridine (33), quinoline (33),
and dialkyl ketones (80) have been proposed.

TUse of a solvent not only facilitates a homogeneous reaction mixture but in a
number of cases enables the reaction to be carried out under milder conditions.
Sodium 2-naphthoxide, for example, is reported to undergo carbonation readily
in dioxane at 50-60°C. and 1 atm. to give 2-hydroxy-1-naphthoic acid (152).
Sodium 1-naphthoxide in pyridine at 115°C. under 1 atm. of carbon dioxide
gives an almost quantitative yield of 1-hydroxy-2-naphthoic acid (33). Likewise,
sodium p-benzylphenoxide was found to give 5-benzyl-2-hydroxybenzoic acid
in good yield when carbonated in methyl isobutyl ketone solution at 100°C.
and 1 atm. (80).

Isemer has pointed out that carbonation proceeds most readily in solvents of
low dielectric constant (128). Some supporting experimental results are given
in table 6.

IV. Prorosep REacCTION MECHANISMS
A. METALATION OF AROMATIC NUCLEUS

Kolbe (137) found that for every two moles of sodium phenoxide heated in a
stream of carbon dioxide, almost exactly one mole was liberated as phenol, the
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other mole being converted into disodium salicylate. To accommodate these
facts he postulated ortho metalation of one molecule of sodium phenoxide through
sodium-hydrogen interchange with a second molecule, with formation of phenol;
the metalated derivative was presumed to react directly with carbon dioxide to
vield disodium salicylate.

0 :0-0 0

ONa

Na COONa
+ CO, —

It has been shown that dimetallo derivatives of phenoxides are formed under
certain conditions: for example, by refluxing lithium phenoxide with n-butyl-
lithium in ether (87). Treatment with carbon dioxide gave salicylic acid in low
yield. In the absence of n-butyllithium no salicylic acid was obtained. Treatment
of 2-naphthol with n-butyllithium in boiling benzene followed by subsequent
carbonation gave 2-hydroxy-3-naphthoic acid in 7 per cent yield. On the basis
of these results and the observations of other workers (82) that some metallic
enolates react as true organometallic compounds towards carbon dioxide, it was
suggested that at the temperature of the Kolbe—Schmitt reaction the phenoxide
tautomerizes to the ortho-metalated forms. These tautomers either react
directly with carbon dioxide, as does phenyllithium for example, or react with
nontautomerized phenoxide to produce ortho-metalated compounds which then
react with carbon dioxide. Further evidence for the existence of di- and tri-
metalated derivatives of alkali metal phenoxides arises from the presence of
salicylic, 2-hydroxyisophthalic, and 2-hydroxyterephthalic acids upon the car-
bonation of sodium or potassium phenoxide after treatment with n-amylsodium
in boiling dodecane (166).

ONa 0] OH
| | Na | Na
S
~— H ~
l CO, J' CO.
0] OH
l COONa | COONa
/
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The mechanism involving the formation of ortho-metalated tautomers has
however been criticized (92) on the basis that sodium phenoxide at temperatures
above 120°C. reacts with an alkyl halide to give substantially the corresponding
alkyl phenyl ether. Thus, treatment of sodium phenoxide at 150°C. with n-hexyl
bromide gives n-hexyl phenyl ether in 91 per cent yield, Appreciable quantities
of ortho-substituted alkylphenol would be expected to be formed if tautomerism
of the type suggested had occurred at this temperature.

B, INTERMEDIATE FORMATION OF METAL ARYL CARBONATE

Although Kolbe suggested in 1860 (141) that large quantities of sodium phenyl
carbonate were formed during the reaction of sodium with phenol in the pres-
ence of carbon dioxide, he later concluded that sodium bicarbonate was the
main by-product (137). Schmitt (204), however, claimed that sodium phenyl
carbonate could be prepared by treating perfectly dry sodium phenoxide with
dry carbon dioxide. After two to four weeks almost exactly one mole of carbon
dioxide was absorbed, increase in volume and development of heat being
observed. The substance so formed was a white solid; it was very much less
deliquescent than sodium phenoxide and on treatment with water evolved carbon
dioxide with formation of phenol, sodium phenoxide, and sodium bicarbonate.

Schmitt criticized Kolbe’s suggested mechanism on the basis that although
carbon dioxide was absorbed by the sodium phenoxide at temperatures below
100°C., phenol was not liberated until higher temperatures (above 140°C.) were
reached. Following an earher suggestion (9) he postulated initial formation of
sodium phenyl carbonate, which subsequently rearranged to give the salt of
salicylic acid. The following consecutive reactions were proposed:

(l) CeHa()Na ‘+— (‘()2 hand C6H50C00Na

2y CH;0CO00Na — HOCH,COONa

3y HOCH,COONa + CsH;ONu — CsH;OH + NaOCH,LCOONa
Schmitt showed that when his preparation of sodium phenyl carbonate was
heated for 1 hr. at 120-130°C. in a sealed tube it was quantitatively converted
to monosodium salicylate, and that the latter when heated with a further mole
of sodium phenoxide vielded phenol and disodium salicylate.

The idea that sodiumn phenyl carbonate was formed as an intermediate had
also been advanced by Hentschel (99) who proposed the following reaction
steps:

(l) (.,‘()2 "*;“ (_/sHs()_\a had (5}‘15()(()():\&
{2) CeH;0COO0ONa + CeHiONa —» NaOCH, L COONG + CgHsOH

The similar conversion of potassium phenyl sulfate to potassium p-phenolsul-
fonate ohserved by Baumann (9) lent support to this idea. Hentschel also showed
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that when ethyl pheny! carbonate was heated with dry sodiuin phenoxide.
monosodium salicylate and phenetole were the only products, Similarly, sodinm
salicvlate and anisole were obtained quantitatively from diphenyl carbonate
and sodium methoxide.

Tt was later suggested (165) that I was an intermediate in the Kolbe—Schmitt
reaction, being formed either by reaction of sodium phenoxide with the sodium
phenyl carbonate or by reaction of two molex of sodium phenoxide with carbon
dioxide directly. Breakdown of I may occur by either of the routes shown. No
very convineing evidence was advanced to support this theory.

(‘)‘\vii HOCGH;(‘()ONLL ‘r‘ ("GHE,()‘\‘&
\
(6115 ()*(“' ()(‘{31'}.

ON T NaOCH,COONy  +  CoH Ol
1

Sluiter (234) found that on heating diphenyl carbonate with two moles o
sodium hydroxide, sodium carbonate and phenol were forined; with one mole of
sodium hydroxide, phenol and phenyl sodium carbonate were formed. Approxi-
mately 60 per cent of the latter underwent immediate decomposition, at 160°C.
and 1 atm., into carbon dioxide and sodium phenoxide, and 40 per cent rearranged
to monosodium salicylate. These experiments were claimed to prove that sodium
phenyl carbonate could act as an intermediate product in the Iolbe-Schmitt
reaction (242).

Davies (52), by measurement of the carbon dioxide equilibrium pressure
during the salicylic acid synthesis, concluded that two, not previously recognized
“ester salts” were formed. At about 85°C. the “ester salt I”" was formed from
sodium phenoxide and carbon dioxide, which at 120-140°C. underwent an intra-
molecular conversion to “ester salt II,”” which rearranged to form sodium sali-
cylate without any decrease in pressure occurring. In addition the P, T curve
showed an inflexion at 190° and 4.15 atm., which Davies regarded as the quin-
tuple point of the following five phasges: monosodium salicylate, disodium sali-
cylate, sodium phenoxide, phenol (molten phase), and carbon dioxide (gaseous
phase). Later Sinkow showed (232) that the “ester salts I and 11" were identical,
and that the results observed by Davies and earlier workers (10) obeyed the
Nernst and Clausius-Clapeyron equations, indicating a heterogeneous equilib-
rium. It was further suggested that the formation of p-hydroxybenzoate during
the reaction would also complicate the interpretation of the results (143).

Later workers (231) examined the carbonation of dry sodium 2-naphthoxide
and found that at low temperatures (40-60°C.) a reaction occurred; the product,
which they considered to be sodium g-naphthyl carbonate (I1), dissociated at
higher temperatures into its components. At 120°C. under pressure with carbon
dioxide, II rearranged to give I-carboxy-2-sodium naphthoxide (III). Inter-
action of this product with itself at 145-160°C. led to the formation of disodium
2-oxy-1-naphthoate (IV), 2-naphthol, and carbon dioxide. When the reaction
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mixture was heated at 200°C. the rearrangement to disodium 2-oxy-3-naph-
thoate (V) occurred. It was claimed, without experimental details, that the
carbonation product (III) would readily absorb dry ammonia, thus confirming
its structure. The intermediate carbonate (II) was considered to decompose to
give “active carbon dioxide,” which then carbonated the sodium naphthoxide
(¢f . Section IV,C). A somewhat similar mechanism for the reaction was advanced
by Gershzon (85), who claimed to have prepared C¢H;C(=XNC¢H;s)ONa by treat-
ing the phenyl ester of phenylcarbamic acid with sodium in boiling xylene. The

\ONa 40-60°C. 7 /\\ OCOONa
0% —e e
Y >60°C. N \/ 120°C.
II
COOH
NONa 160 7N NOH
- 145-160°C. ;
—= CO, /\l +
Y
III
]/1 NONa
\‘ /COONa
VT

sodium compound in the reaction mixture was heated in a sealed tube at 200°C.
for 1 hr. and yielded about 20 per cent of salicylanilide. The 1-naphthyl and
2-naphthyl esters under similar treatment yielded the corresponding hydroxy-

O(H30Na 200°C. OH
NCsH; CONHCH;
Salicylanilide

naphthoic anilides. It was claimed that these experiments proved the inter-
mediate formation of metal aryl carbonates in the Kolbe—Schmitt reaction;
this claim was later shown to be without basis by Chelintsev, who found that
the products arising by treatment of the phenyl ester of phenylearbamic acid
with sodium were diphenylurea and triphenyl isocyanurate (40). The triphenyl
isocyanurate suggested the presence of phenyl isocyanate in the reaction mixture.
It was shown that salicylanilide was formed by heating phenyl isocyanate with
sodium phenoxide. Gershzon’s “proof” of the mechanism is therefore invalid.
The theory of intermediate formation of a metal aryl carbonate is not sup-
ported by the observations of some recent workers (92), who consider that the
initial reaction of carbon dioxide with the metal aryloxide at low temperatures
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involves weak chelation of the gas with the metal to give an unstable complex.
Thus the ready dissociation of the complex into its components under a vacuum
or at atmospheric pressure on heating would be explained. The evolution of
carbon dioxide on treatment of the complex with dry acetone (165) and on
treatment with water (204) probably arises from the stronger chelating power
of these solvents, leading to displacement of carbon dioxide; in the case of water
subsequent reaction occurs. Acetone has been shown to form an equimolecular
complex with sodium phenoxide (221), the acetone being removable under
vacuum; similarly, phenol will chelate with sodium phenoxide (84).

The sodium phenoxide—carbon dioxide complex was shown to give rise to a
carbonyl absorption band at 1684 em.~! in the infrared, whereas sodium methyl
carbonate, a stable recrystallizable solid, gave rise to carbonyl absorption at
1630 cm.™! Similarly, the complex prepared from carbon dioxide and sodium
2-cresoxide possesses a carbonyl absorption at around 1670 cm.™! (154). Davies
(52) showed the dissociation pressure of this complex to be around 4 atm. between
120°C. and 160°C.; hence it could well be the true intermediate in the carbona-
tion process.

C. DIRECT NUCLEAR CARBONATION

In 1904 it was shown (155) that the compound prepared from sodium phen-
oxide and carbon dioxide by Schmitt would dissociate into its components at
85°C., the vapor pressure then being about 1 atm. These workers considered
that such an intermediate could not exist under the Kolbe conditions of car-
bonation and was also unlikely under the Schmitt conditions. Carbonation must
therefore occur by direct nuclear substitution. A carbonate intermediate was,

ONa ONa
+ CO, —
COOH

VI

however, not ruled out for the carbonation of other compounds such as sodium
8-quinolyl oxide (208). Subsequently Tijmstra claimed to have proved this
theory by means of the following experiments (241): (1) Only a slight increase
in weight could be detected after heating sodium phenoxide at 110°C. with
carbon dioxide at atmospheric pressure, indicating that no reaction had occurred.
(2) Heating the carbonation product—believed to be sodium salicyloxide (VI)—
with methyl iodide yielded methyl salicylate. Since o-methoxybenzoic acid
readily rearranges to methyl salicylate under basic conditions this test was
inconclusive. (3) The dissociation pressure of sodium salicyloxide at 180°C.
after one day was found to be approximately 1 atm. Sodium salicylate at 180°C.
had a dissociation pressure of only 534 mm. after two days. The difference was
shown by introducing a small amount of the carbonation product into paraflin
oil at 180°C.; a turbulent evolution of gas occurred. Sodium salicylate yielded
no gas under similar conditions. (4) The carbonation product was found to
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absorb dry amnionia, whereas sodium salicylate did not. The carbonation prod-
uct after being heated for 20 hr. with water and then evaporated to dryness
would still absorb ammonia. Sodium salicylate heated at 248°C. for 2.5 hr. and
washed with ether (traces of phenol) also absorbed ammonia. It was considered
that the rearrangement shown below had taken place:

i/ wOH e K\‘IOM

—

COONa K\\/J'COOH

Tijmstra’s evidence can be criticized on the grounds that the product prepared
by carbonating sodium phenoxide with carbon dioxide under pressure always
contains small amounts of phenol and sodium bicarbonate when moisture is
not rigorously excluded from the autoclave (92). The presence of these by-prod-
ucts would explain the observations listed under 3 and 4 above. Furthermore,
monosodium salicylate heated at 220°C. and above is converted into a mixture
of disodium salicylate, phenol, and carbon dioxide (123, 176). Tijmstra’s con-
clusions are therefore doubtful.

Similar doubtful conclusions have been reached in the case of the carbonation
of sodium 2-naphthoxide (219), where direct nuclear carbonation is postulated.
The sodium hydroxynaphthoate first formed is considered to decompose into
its components at higher temperatures (280°C.) with recarbonation of the nu-
cleus to give sodium 2-hydroxy-3-naphthoate, the latter then undergoing reaction
with a further molecule of sodium 2-naphthoxide to yield disodium 2-oxy-3-
naphthoate and free 2-naphthol. This mechanism appears unlikely, since it has
been shown that quantitative conversion of disodium 2-oxy-1-naphthoate to the
2-oxy-3-naphthoate occurs at 300°C. (113).

Tijmstra’s formulation of the carbonation product in the phenol series as
sodium salicyloxide (VI) has been shown (92) to be untenable on the basis of
its infrared spectrum. This, however, does not rule out the possibility that the
original hypothesis of direct nuclear carbonation may represent the first step
in the reaction, and that subsequent interchange of hydrogen and sodium ions
(or atoms) oceurs, giving sodium salicylate as the final product.

D. TAUTOMERIC REARRANGEMENT

By analogy with the reaction of carbon dioxide with the metal enolates of
some ketones (29) to give B-keto acids, Hiickel suggested (118) that the Kolbe—
Schmitt reaction proceeded by the addition of carbon dioxide to the mesomeric
phenoxy or naphthoxy anion, the predominance of the mesomeric form being
governed by the alkali metal used.

o/ N—0 T Neo
H/\_/— - @Oe “« \%—

p-Quinolide form ra-Qumollde form



THE KOLBE-SCHMITT REACTION 299

This idea has also been advanced to explain the different carbonation products
of sodium 2-naphthoxide at different temperatures (132). It is considered that,
with increasing temperatures, one of the resonance forms of the naphthoxide
ion becomes more predominant than the others, thus giving rise to the different
products.

0e )
"R AW AV
7 ‘/ \I/ >110°C >180°C. r/ \,'/\/
| . ———— !
WA <110°C NN N
The postulated produets for carbon dioxide addition are:
COOH
7>NNocooNs 7 Noxa /\1 NONy
| = | = J 1
ki‘%/ Y ‘\\/ \/ Y COOH

No direct experimental evidence is at present available on which to judge the
correctness of these views.

E. CHELATE FORMATION AND ELECTROPHILIC SUBSTITUTION

Johnson (131) found that benzylmagnesium chloride often reacted with
various compounds to give abnormally the o-tolyl derivatives, and by analogy
suggested that the Kolbe—Schmitt reaction proceeded by the mechanism illus-
trated in the sequence below. The primary addition product was considered to
be bound by a coordinate linkage, the activated molecule then substituting at

/ONa

N 74 ON v
o _ (¥
0 e 0

the ortho position with stabilization of the transition stage by ring formation.
Luttringhaus (158), on the basis of his results on rearrangement during the fission
of ethers by means of alkali metals, tentatively suggested that during the Reimer-
Tiemann aldehyde synthesis and the Kolbe-Schmitt salicylic acid synthesis a
cyclic stage was involved, leading to ortho substitution, viz:

O + :
‘ \/O+\C=O . \/+ “C ] \/0;-.1‘{
| Na — 1 N0 L — | Na
P L Y S0

| :

O

In the case of potassium phenoxide under these conditions, owing to the limited
degree of chemical stability and also to the greater ionic volume of potassium,
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p-hydroxybenzoate will result. A cyclic intermediate has also been postulated
by other workers (198) during the carbonation of ester enolates. This reaction
mechanism, shown below, involves the formation of a four-membered ring
intermediate.

CeHs OCH; C¢H; OCH; CeH; OCH;
AN S AN N
c=C C—CONa CcC=0
/ N / | e
CGH5 ONa - CGI'I{, ’ — CGHB l
+ | ,
0=C=0 0=C—0 0=CONa

Now it is known that phenol will undergo carbonation under Kolbe~Schmitt
conditions only in the form of the alkali metal phenoxide (135). In the Marasse
modification of the reaction (see Section II,C above), where the free phenol is
heated with anhydrous carbonate and carbon dioxide under pressure, it has been
shown that phenoxide formation is a necessary prelude to reaction (254). It
therefore seems likely that this type of carbonation involves electrophilic attack
on the ortho carbon atom (220). Presumably a similar process can operate when
carbonation is carried out in phenol solution; here one of the phenol molecules
of the sodium phenoxide—phenol solvate would be displaced by a molecule of
carbon dioxide, with subsequent attack on the ortho position.

A mechanism based on the preliminary association of sodium phenoxide with
carbon dioxide under pressure to form a complex, and involving intramolecular
reaction with displacement of the ortho hydrogen by electrophilic attack has
been suggested (92). If the transition stage involves a w-complex, and the oxy-
gen atom in solid sodium phenoxide is coplanar with the benzene ring so that its
“lone pair” electrons can take part in a molecular w-electron orbital, then the
proton displaced onto the w-electron system would migrate to the phenolic
oxygen (55).

ONa O O
SN Ny N VR
0 N l ONa N \v + N
7 | | | _ . C—ONa
C 7/ *C N
N AN S 0
0 0
OH
/
—_—
C—ONa
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V. APPLICATION OF THE KOLBE-SCHMITT REACTION
A. AROMATIC SERIES

In general, as with other electrophilic reactions, the presence of alkyl groups
in the aromatic nucleus promotes ortho carbonation in phenols with high yields
of product. The effect is most marked with para-substituted and less so for ortho-
substituted alkylphenols. The reactivity, however, is modified by a steric hin-
drance factor. Where the hydroxyl is flanked by two ortho alkyl substituents
only a low yield of the para-carbonated compound is obtained. Similarly, with
two alkyl substituents both in the meta positions, only low yields of the ortho-
carbonated product are realized. These results are exemplified in the case of the
xylenols (6, 36, 179, 254). Where both the ortho and the para positions carry
alkyl substituents no carbonation occurs (128). Phenyl groups ortho or para to
the hydroxyl promote high yields of the ortho-carbonated product, while para-
substituted aroyl groups have a deactivating effect with consequent reduced
yields of the acid. Some differences arising from the use of different alkali metal
derivatives of the alkylphenols have already been given in Section III,C.

For other substituents in the phenolic nucleus it can be stated that, in general,
electron-donating substituents facilitate the carbonation reaction, while elec-
tron-withdrawing substituents retard or inhibit carbonation. Thus the presence
of amino, methoxyl, or additional hydroxyl groups usually enables the reaction
to be carried out at lower temperatures and with increased yields of products.
The halogen-substituted phenols can be carbonated under both Kolbe—Schmitt
and Marasse conditions, the o-, m-, and p-fluoro-, chloro-, and bromophenols
giving satisfactory yields, whereas low yields are obtained from the o-, m-, and
p-iodophenols (6, 254). In the case of o-fluorophenols ortho and para carbona-
tion occurs, the relative amounts depending on the alkali metal used (Section
I1I,C) (76).

In contrast, electron-withdrawing substituents such as nitro, nitrile, and car-
boxylate ion retard carbonation. Thus m-nitrophenol gives only a 19 per cent
yield of acid under Marasse conditions (254), while the o- and p-nitro- and o-
cyanophenols are inert (128, 129). Carboxylate ions and acyl groups have a lower
deactivating effect on the ring, however, and can often be carbonated at higher
temperatures.

B. HETEROCYCLIC SERIES

Carbonation of the heterocyclic aromatic nucleus has been less extensively
studied than carbonation of the carbocyclic aromatic series, and the number of
successful carbonations reported in the literature is relatively small.

In the pyridine series 2-, 3-, and 4-hydroxypyridines have been carbonated
under Kolbe-Schmitt or Marasse conditions. In the former instance para-
substitution occurs exclusively (6, 244), while the second compound gives the
ortho or para acid depending on the reaction conditions; the third compound
gives only the ortho mono- or dicarboxylic acid (6, 21, 22).
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Carbonation of the heterocyclic nucleus of hydroxyquinolines or hydroxy-
1soquinolines has not yet been reported. However, 6-hydroxy- and 8-hydroxy-
quinoline can be successfully carbonated in the carbocyclic aromatic nucleus
(206, 208). The known lower reactivity of quinoline compounds, as well as
reduced mobility of the metal through chelation, has been suggested as a reason
for the failure of carbonation experiments (86).

Pyrrole is well known to behave analogously to phenol and it was early found
that 2-pyrrolecarboxylic acid was formed by heating pyrrole with aqueous am-
monium carbonate in a sealed tube (46). The same product admixed with the
3-carboxylic acid was also obtained by heating potassium pyrrole in a stream of
carbon dioxide at 200-220°C. The potassium derivatives of 2- and 3-methyl-
pyrrole could similarly be carbonated (41, 42, 43, 47, 48). Potassium carbazole
carbonated by a similar process was initially thought to give the carbamic acid
(VII), but the product was later shown to be 1-carbazolecarboxylic acid (VIII),
identical with the substance obtained by treating the Grignard reagent with
carbon dioxide (26, 45).
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A number of other miscellaneous hydroxy heteroeyelic aromatic compounds
have been carbonated by the Kolbe—Schmitt reaction, including 2-hydroxy-
carbazole and tetrahydro-7-hydroxynaphthylearbazole, but no systematic study
has been carried out.

¢. OTHER COMPOUNDS

The carbonation of the metal enolates of cyclic and aliphatic ketones bears
some analogy to that of metal aryloxides, and a postulated mechanism for the
carbon dioxide addition has already been referred to (page 600). The earliest
experiments along these lines were the preparation of camphorcarboxylic and
cyclohexanonecarboxylic acids by treatment of the ketone with sodium or
sodium amide and carbon dioxide (8, 24, 25, 29, 30, 146).

‘ O O
—
P
\\3/COOH COOH
Camiphorcarboxylic acid 2-Cyclohexanonecarboxylic acid

A similar procedure was used te prepare ecgonine and ¥-tropine-O-carboxylic
acid from tropinone (260).
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CHQ—CH#(‘}HQ
|
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CH,—CH——CH,
Tropinone

CH,—CH—CH CH,—CH—CHCOONa
I\iTCHg %OCOONa + i %TCHg #O
CH,—CH——CH, CH,—CH——CH.
2H lZH

CHz—CVH—‘CHg CH,—CH——CHCOOH
% ;\LCHg H(‘JOCOOH 1 I%CHg #HOH
CH.—CH-——-CH; CH,—CH—-CH.
y-Tropine-O-carboxylic acid Ecgonine

A more extensive investigation of the possibility of carbonating cyclohex-
anone and its derivatives was carried out in 1910, and the successful preparation
of 2-cyclohexanonecarboxylic acid, I1-methylcyclohexan-2-one-3-carboxylic
acid, di- and I-1-methylcyclohexan-3-one-4-carboxylic acid, 1-methylcyclohexan-
4-one-3-carboxylic acid, and d-isomenthonedicarboxylic acid was reported (83).
A recent attempt to carbonate tropolone was unsuccessful (51, 86).

An interesting extension of the carbonation reaction to the preparation of
2-ketocarboxylic acids from dialkyl or alkyl aryl ketones has been recently
reported (153). The sodium enolate was prepared by treatment of the ketone
with sodium amide in liquid ammonia. A two-step mechanism involving addition
of carbon dioxide to the ketonic anion was suggested:

(1) RCOCH3 -+ N&NHQ - (RCOCHz)_Na+ - NH3
(2) CO; + (RCOCH;)Nat — RCOCH,COO~Na*

In general, carbonations of the type discussed are favored by anhydrous condi-
tions and low temperatures, ether and ligroin being the preferred solvents.

VI. TaBuraTioN oF CoMPOUNDS CARBONATED

Tables 7 to 12 present data on the following classes of compounds which have
been carbonated: mononuclear monohydric phenols, mononuclear polyhydric
phenols, dinuclear phenols, polynuclear phenols, heterocycles, and ketones.

The information quoted in these tables is taken from the initial reference given;
subsequent references give alternative methods of preparation or additional
information. The range of compounds included is as extensive as possible, but
no claim is made that the tables are complete. A number of Kolbe-Schmitt
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carbonation experiments are buried in papers dealing with other topics or in the
patent literature. Under the heading “Conditions: Metal or Marasse,” Li, Na,
K indicate that the salts of these metals were subjected to the Kolbe—Schmitt
reaction; M indicates that the Marasse modification was used with potassium
carbonate. The use of other carbonates is indicated by the appropriate formulas.

VII. SUMMARY

A survey of the Kolbe-Schmitt reaction with various modifications for the
carbonation of phenols, heterocylic hydroxy compounds, and certain ketones
has been presented. The Kolbe—Schmitt procedure remains the standard com-
mercial method for the preparation of aromatic hydroxy acids. The Marasse
modification is more convenient for laboratory use. The course of the reaction
is influenced by temperature, pressure, alkali metal, and the presence or absence
of water. The mechanism of the reaction has not been rigorously established,
but introduction of the carboxyl group by electrophilic substitution agrees with
the known facts. Tables showing compounds carbonated, the experimental
conditions, and the yvields of the acids are given.

The authors wish to thank Dr. J. Idris Jones for critically reading the manu-
seript and Dr. D, D. Pratt, C.B.E., Director of the Chemical Research Labora-
tory, for permitting the participation of one of us (A.S.L.) in the preparation of
this review.
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